As before, your assistant intends to pick two random points along the circumference of the garden and run a hose straight between them.
This time, you’ve decided to contribute to the madness yourself by picking a random point inside the garden to plant a second peach tree. On average, how far can you expect this point to be from the nearest part of the hose?
Here let's again assume that the assistant's hose starts at $(1,0)$ and ends at $(\cos \theta, \sin \theta)$ for some uniform random $\theta \sim U(0,2\pi).$ Here however, we assume that there is a peach tree at the random point $(u,v)$ for some uniformly random point with $$f(u,v) = \frac{1}{\pi}\chi ( u^2+v^2 \leq 1 ).$$ We can again use the line $y = x\tan \frac{\theta}{2},$ which is the perpendicular bisector of the chord traces by the hose, or more precisely we will use parallel copies of it. Let's subdivide the circular area into three different spaces: \begin{align*}\Omega_1(\theta) &= \left\{ (u,v) \mid u^2 + v^2 \leq 1, \left| v - u \tan \frac{\theta}{2} \right| \leq \tan \frac{\theta}{2} \right\} \\ \Omega_2(\theta) &= \left\{ (u,v) \mid u^2 + v^2 \leq 1, v - u\tan \frac{\theta}{2} \geq \tan \frac{\theta}{2} \right\} \\ \Omega_3(\theta) &= \left\{ (u,v) \mid u^2 + v^2 \leq 1, v - u \tan \frac{\theta}{2} \leq - \tan \frac{\theta}{2} \right\}.\end{align*}
In general we get \begin{align*}\lambda^*(u,v,\theta) & = \arg\max \left\{ \| ( 1 - \lambda + \lambda \cos \theta - u, \lambda \sin \theta - v ) \|_2 \mid 0 \leq \lambda \leq 1 \right\} \\ &= \arg \max \left\{ (1-u)^2 + v^2 - 2 \lambda ( (1-u)(1-\cos \theta) + v\sin \theta ) \right.\\&\quad\quad\quad\quad\quad\quad\quad\quad \left.+ 2(1-\cos \theta) \lambda^2 \mid 0 \leq \lambda \leq 1 \right\} \\ &= \begin{cases} \frac{1}{2} \left( 1 - u + v \cot \frac{\theta}{2} \right), & \text{ if $(u,v) \in \Omega_1(\theta)$; } \\ 0, &\text{ if $(u,v) \in \Omega_2(\theta)$;} \\ 1, &\text{if $(u,v) \in \Omega_3(\theta).$}\end{cases}\end{align*} Plugging this back in we see that we have $$d(u,v,\theta) = \begin{cases} \frac{ \left| (1-u) \sin \theta + v(1-\cos \theta) \right| }{ 2 \sin \frac{\theta}{2} }, &\text{if $(u,v) \in \Omega_1(\theta)$;} \\ \sqrt{ (u-1)^2 + v^2 }, &\text{if $(u,v) \in \Omega_2(\theta)$;} \\ \sqrt{ (u- \cos \theta)^2 + (v - \sin \theta)^2 }, &\text{ if $(u,v) \in \Omega_3(\theta).$}\end{cases}$$
Let's first attack $A(\theta) = \iint_{\Omega_1(\theta)} d(u,v,\theta) f(u,v) \,du\,dv.$ We see that, so long as $0 \leq \theta \leq \pi$, by rotating the plane counterclockwise about the origin by $\frac{\pi-\theta}{2}$ that the chord is now parallel to the $x$-axis and stretches from $(-\sin \frac{\theta}{2}, \cos \frac{\theta}{2})$ to $(\sin \frac{\theta}{2}, \cos \frac{\theta}{2}).$ In this case, it is clear to see that the distance $d(u^\prime, v^\prime, \theta) = |v^\prime - \cos \frac{\theta}{2}|.$ So the transformed integral is \begin{align*}A(\theta) &= \frac{2}{\pi} \int_0^{\sin \theta/2} \int_{-\sqrt{1-x^2}}^{\sqrt{1-x^2}} \left|y - \cos \frac{\theta}{2}\right| \,dy \,dx \\ &= \frac{2}{\pi} \int_0^{\sin \theta/2} \left( \int_{-\sqrt{1-x^2}}^{\cos \theta/2} \left(\cos \frac{\theta}{2} - y \right)\,dy + \int_{\cos \theta/2}^{\sqrt{1-x^2}} \left( y - \cos \frac{\theta}{2} \right) \,dy \right) \,dx \\ &= \frac{2}{\pi} \int_0^{\sin \theta/2} \left(1 + \cos^2 \frac{\theta}{2} - x^2\right) \,dx \\ &= \frac{2}{\pi} \sin \frac{\theta}{2} \left( 1 + \cos^2 \frac{\theta}{2} \right) - \frac{2}{3\pi} \sin^3 \frac{\theta}{2} \\ &= \frac{4}{3\pi} \sin \frac{\theta}{2} \left( 1 + 2 \cos^2 \frac{\theta}{2} \right).\end{align*}
We see from symmetry that $\iint_{\Omega_2(\theta)} d(u,v,\theta) f(u,v)\,du\,dv = \iint_{\Omega_3(\theta)} d(u,v,\theta) f(u,v) \,du\,dv,$ so let's let \begin{align*}B(\theta) = \frac{2}{\pi} \iint_{\Omega_2(\theta)} d(u,v,\theta)\,du\,dv &= \frac{2}{\pi} \int_{-\cos \theta}^1 \int_{-\sqrt{1-x^2}}^{\tan \frac{\theta}{2} (x - 1)} \sqrt{ (x-1)^2 + y^2 }\,dy\,dx \\& = \frac{2}{\pi} \int_{\pi + \theta/2}^{3\pi/2} \int_0^{-2\cos \phi} \rho^2 \,d\rho \,d\phi,\end{align*} where the final change of variables represents the transformation $(u,v)$ into $(1 + \rho \cos \phi, \rho \sin \phi)$ for $\phi \in ( \pi + \theta/2, 3\pi/2)$ and $0 \leq \rho \leq -2\cos \phi.$ Therefore, we see that $$B(\theta) = \frac{2}{\pi} \int_{\pi + \theta/2}^{3\pi/2} \left(-\frac{8}{3} \cos^3 \phi\right) \,d\phi = \frac{2}{\pi} \left(\frac{16}{9} - \frac{8}{3} \sin \frac{\theta}{2} + \frac{8}{9} \sin^3 \frac{\theta}{2}\right).$$
Putting these two together we see that the average distance from the random point $(u,v)$ to the chord from $(1,0)$ to $(\cos \theta, \sin \theta)$ is given by $d(\theta) = A(\theta) + B(\theta).$ Therefore, through symmetry, we see that the average distance is given by $$\hat{d} = \frac{1}{\pi} \int_0^\pi d(\theta) \,d\theta = \frac{1}{\pi} \int_0^\pi A(\theta) \,d\theta + \frac{1}{\pi} \int_0^\pi B(\theta)\, d\theta.$$ We have \begin{align*}\frac{1}{\pi} \int_0^\pi A(\theta) \,d\theta &= \frac{4}{3\pi^2} \int_0^\pi \sin \frac{\theta}{2} \left( 1 + 2 \cos^2 \frac{\theta}{2} \right)\,d\theta \\ &= \frac{8}{3\pi^2} \left.\left( -\cos \frac{\theta}{2} - \frac{2}{3} \cos^3 \frac{\theta}{2} \right)\right|_0^\pi = \frac{40}{9\pi^2}.\end{align*} Similarly, we have \begin{align*}\frac{1}{\pi} \int_0^\pi B(\theta) \,d\theta &= \frac{2}{\pi^2} \int_0^\pi \left(\frac{16}{9} - \frac{8}{3} \sin \frac{\theta}{2} + \frac{8}{9}\sin^3 \frac{\theta}{2} \right) \,d\theta \\ &= \frac{2}{\pi^2} \left.\left( \frac{16}{9} \theta + \frac{32}{9} \cos \frac{\theta}{2} + \frac{16}{27} \cos^3 \frac{\theta}{2} \right)\right|_0^\pi = \frac{96\pi - 224}{27\pi^2}.\end{align*} Combining these together gives the average distance between the randomly place hose and your randomly placed peach tree at a slightly larger $$\hat{d} = \frac{40}{9\pi^2} + \frac{96\pi - 224}{27\pi^2} = \frac{96\pi - 104}{27\pi^2} \approx 0.741494295364\dots$$ furlongs.