Monday, September 8, 2025

High-Low Hijinks Extra Credit

Your friend is playing an epic game of “high-low” and has made it incredibly far, having racked up a huge number of points. Given this information, and only this information, what is the probability that your friend wins the next round of the game?

Let's define this problem as the following probabilistic statement, what is the conditional probability that $N \geq n+1$ given that $N \geq n,$ when $n$ is large? That is, find $$\lambda = \lim_{n \to \infty} \mathbb{P} \left \{ N \geq n+1 \mid N \geq n \right\} = \lim_{n\to \infty} \frac{\mathbb{P} \{ N \geq n+1 \}}{\mathbb{P} \{ N \geq n \} } = \lim_{n\to\infty} \frac{p_{n+1}}{p_n}.$$

One method that we can do is to just compute successive values of $p_n,$ as per the following table:

$n$ $p_n$
1 $\frac{3}{4}$
2 $\frac{13}{24}$
3 $\frac{25}{64}$
4 $\frac{541}{1920}$
5 $\frac{1561}{7680}$
6 $\frac{47293}{322560}$
7 $\frac{36389}{344064}$
8 $\frac{7087261}{92897280}$
9 $\frac{34082521}{619315200}$
10 $\frac{1622632573}{40874803200}$

Even by this point, it seems that the ratio of $p_{n+1} / p_n$ approaches roughly $0.72134752\dots,$ but let's see if we can make sense of this otherwise mysterious limit.

Let's focus on the recursion $h_{n+1}(t) = \int_0^1 I(t,x) h_n(x) \,dx$ that we saw in the Classic problem. Let's assume that we have $h_{n+1} (x) \approx \lambda h_n (x),$ for large values of $n \gg 1.$ Then the recursion formula would settle down to something like $$\lambda h^*(t) = \int_0^1 I(t,x) h^*(x) \,dx = \begin{cases} \int_t^1 h^*(x)\,dx, &\text{if $t \lt \frac{1}{2};$}\\ \int_0^t h^*(x) \,dx, &\text{if $t \gt \frac{1}{2};$}\end{cases}.$$ Differentiating both sides of the equation, we get $$\lambda \frac{d}{dt} h^*(t) = \begin{cases} -h^*(t), &\text{if $t \lt \frac{1}{2};$}\\ h^*(t), &\text{if $t \gt \frac{1}{2}.$}\end{cases}.$$ Let's focus on when $t \gt \frac{1}{2},$ in which case we have $\lambda \frac{d}{dt} h^*(t) = h^*(t),$ so we would have $h^*(t) = C \exp \left( \frac{t}{\lambda} \right)$ for $t \gt \frac{1}{2},$ with $h^*(t) = h^*(1-t) = C \exp \left( \frac{ 1-t}{\lambda} \right)$ for $t \lt \frac{1}{2}.$ In this case, plugging back in, if our recursion formula still holds for $t \gt \frac{1}{2},$ we would need to have \begin{align*}\lambda C e^{t/\lambda} &= \int_0^\frac{1}{2} C \exp \left( \frac{1-t}{\lambda} \right)\,dt + \int_\frac{1}{2}^t C\exp \left(\frac{t}{\lambda}\right) \,dt \\ &= \lambda C \left( e^{1/\lambda} - e^{1/(2\lambda)} \right) + \lambda C \left( e^{t/\lambda} - e^{1/(2\lambda)} \right) \\ &= \lambda C e^{t/\lambda} + \lambda C \left( e^{1/\lambda} - 2 e^{1/(2\lambda)} \right).\end{align*} Therefore, we must have either $\lambda = 0$ or $e^{1/\lambda} - 2 e^{1/(2\lambda)} = 0$ in order tof the recursion formula to hold, which implies that the conditional probability of winning the next round in a long game of high-low is $$\lambda = \lim_{n \to \infty} \frac{p_{n+1}}{p_n} = \frac{1}{2\ln 2} \approx 0.721347520444\dots.$$

High-Low Hijinks

You’re playing a game of “high-low,” which proceeds as follows:

  • First, you are presented with a random number, $x_1$, which is between $0$ and $1.$
  • A new number, $x_2$, is about to be randomly selected between $0$ and $1$, independent of the first number. But before it’s selected, you must guess how $x_2$ will compare to $x_1$. If you think $x_2$ will be greater than $x_1$ you guess “high.” If you think $x_2$ will be less than $x_1$, you guess “low.” If you guess correctly, you earn a point and advance to the next round. Otherwise, the game is over.
  • If you correctly guessed how $x_2$ compared to $x_1$ then another random number, $x_3$, will be selected between $0$ and $1$. This time, you must compare $x_3$ to $x_2$, guessing whether it will be “high” or “low.” If you guess correctly, you earn a point and advance to the next round. Otherwise, the game is over.

You continue playing as many rounds as you can, as long as you keep guessing correctly. You quickly realize that the best strategy is to guess “high” whenever the previous number is less than $0.5,$ and “low” whenever the previous number is greater than $0.5.$ With this strategy, what is the probability you will earn at least two points? That is, what are your chances of correctly comparing $x_2$ to $x_1$ and then also correctly comparing $x_3$ to $x_2$?.

Let's define the indicator function $$I(s,t) = \begin{cases} 1, &\text{if $(t-s)(s-\frac{1}{2}) \leq 0;$} \\ 0, &\text{otherwise,}\end{cases}$$ such that $I(x_1,x_2) = 1$ whenever you successfully earned a point in the first round and $I(x_2,x_3) = 1$ whenever you successfully earned a second point. Let $N = N(x_1, x_2, \dots, x_n, \dots)$ be the random variable that corresponds to your score from playing this game of high-low. We see that based on this setup we have $$\mathbb{P} \{ N \geq n \} = \int_0^1 \int_0^1 \cdots \int_0^1 \prod_{i=1}^n I(x_i, x_{i+1}) \,dx_{n+1} \,dx_n \,dx_{n-1}\, \cdots \,dx_2 \,dx_1.$$ Further, let's define $h_0(t) = 1$ and $$h_1(t) = \int_0^1 I(t, x) \,dx = \begin{cases} \int_t^1 \,dx = 1-t, &\text{if $t \lt \frac{1}{2};$}\\ \int_0^t \,dx = t, &\text{if $t \geq \frac{1}{2};$} \end{cases} = \max \{ t, 1-t \}.$$ Finally, for any $n \in \mathbb{N},$ define $$h_{n+1}(t) = \int_0^1 I(t,x) h_n(x) \,dx.$$

In particular, if we want to see the probability of haveing a score of at least $2$ is \begin{align*}p_2 = \mathbb{P} \{ N \geq 2 \} &= \int_0^1 \int_0^1 \int_0^1 I(x_1,x_2) I(x_2, x_3) \,dx_3\,dx_2\,dx_1 \\ &= \int_0^1 \int_0^1 I(x_1,x_2) \left(\int_0^1 I(x_2, x_3) \,dx_3 \right) \,dx_2\,dx_1 \\ &= \int_0^1 \int_0^1 I(x_1,x_2) h_1(x_2) \,dx_2 \,dx_1\\ &= \int_0^1 h_2(x_1) \,dx_1.\end{align*} If we extrapolate further, which we will need primarily for the Extra Credit problem, we see that $$p_n = \mathbb{P} \{ N \geq n \} = \int_0^1 h_n(t) \,dt, \,\, \forall n \in \mathbb{N}.$$

Returning to the Classic problem here, we have $h_1(t) = \max \{ t, 1-t \}$ and \begin{align*}h_2(t) = \int_0^1 I(t,x) \max \{x, 1-x\} \,dx &= \begin{cases} \int_t^1 \max \{ x, 1 - x\} \,dx, &\text{if $t \lt \frac{1}{2};$} \\ \int_0^t \max \{x, 1-x\}\,dx, &\text{if $t \geq \frac{1}{2};$}\end{cases} \\ &= \begin{cases} \int_t^\frac{1}{2} (1-x) \,dx + \int_\frac{1}{2}^1 x\,dx, &\text{if $t \lt \frac{1}{2};$} \\ \int_0^\frac{1}{2} (1-x) \,dx + \int_\frac{1}{2}^t x \,dx, &\text{if $t \geq \frac{1}{2};$}\end{cases} \\ &= \begin{cases} \frac{3}{4} - t + \frac{t^2}{2}, &\text{if $t \lt \frac{1}{2};$} \\ \frac{1}{4} + \frac{t^2}{2}, &\text{if $t \geq \frac{1}{2};$}\end{cases} \\ &= \max \left\{ \frac{3}{4} -t + \frac{t^2}{2}, \frac{1}{4} + \frac{t^2}{2} \right\}.\end{align*} So we have the probability of earning at least two points is \begin{align*}p_2 = \mathbb{P} \{ N \geq 2 \} &= \int_0^1 h_2(t) \,dt\\ &= \int_0^\frac{1}{2} \left( \frac{3}{4} - t + \frac{t^2}{2} \right) \,dt + \int_\frac{1}{2}^1 \left( \frac{1}{4} + \frac{t^2}{2} \right) \,dt\\ &= \left[ \frac{3}{4}t -\frac{1}{2}t^2 + \frac{1}{6} t^3 \right]^{t=\frac{1}{2}}_{t=0} + \left[ \frac{1}{4} t + \frac{1}{6} t^3 \right]^{t=1}_{t=\frac{1}{2}} \\ &= \left(\frac{3}{8} - \frac{1}{8} + \frac{1}{48}\right) + \left(\frac{1}{4} + \frac{1}{6}\right) - \left( \frac{1}{8} + \frac{1}{48} \right) \\ &= \frac{13}{24}.\end{align*}