The Game of Attrition works by players successively subtracting their own remaining number of points from their opponents points until one player is left with a nonpositive point total. Assume player A has N points to begin the game and always goes first against his opponent B.
What is the largest point total that B can start with such that A will still win?
Let's say that B has initial points of P>N, since obviously if P≤N, then A will win in the first move. After one round of both A and B's moves, A will have 2N−P points remaining and B will have P−N, both of which are binomials in terms of N and P.
Let An and Bn be the point total for A and B, respectively after n full turns. One full turn of gameplay gives the following recurrence:
An+1=2An−BnBn+1=Bn−AnA0=N,B0=PIf we assume, as after the first turn, that both An and Bn are binomials in terms of N and P, say An=anN+bnP and Bn=cnN+dnP, then the above recurrence becomes an+1=2an−cnbn+1=2bn−dncn+1=cn−andn+1=dn−bna0=d0=1,b0=c0=0 We note that player A will win after n steps if Bn≤0, or equivalently, if P≤−cndnN. The largest possible point total that B can start with such that A will still win is thus sup
Letting x_n = (a_n, b_n, c_n, d_n)^T, and M =\left(\begin{array}{cccc} 2 & 0 & -1 & 0 \\ 0 & 2 & 0 & -1 \\ -1 & 0 & 1 & 0 \\ 0 & -1 & 0 & 1 \end{array}\right), we can express the reccurence more compactly in matrix notation as: x_n = Mx_{n-1} = \cdots = M^n x_0, where x_0 = (1, 0, 0, 1)^T. The matrix M has eigenvalues \lambda_\pm = \frac{3 \pm \sqrt{5}}{2}, each of order 2, associated with eigenvectors u_\pm = \sqrt{\frac{2}{5\mp \sqrt{5}}}\left( \begin{array}{c} 1 \\ 0 \\ \frac{1 \mp \sqrt{5}}{2} \\ 0\end{array} \right) \,\,\, \text{and} \,\,\, v_\pm = \sqrt{\frac{2}{5\mp \sqrt{5}}} \left( \begin{array}{c} 0 \\ 1 \\ 0 \\ \frac{1 \mp \sqrt{5}}{2}\end{array} \right). So let's define L = \left(\begin{array}{cccc} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ -\frac{\sqrt{5}-1}{2} & 0 & \frac{\sqrt{5} + 1}{2} & 0 \\ 0 & -\frac{\sqrt{5}-1}{2} & 0 & \frac{\sqrt{5} + 1}{2}\end{array}\right), D = \left(\begin{array}{cccc} \frac{5-\sqrt{5}}{2} & 0 & 0 & 0 \\ 0 & \frac{5 - \sqrt{5}}{2} & 0 & 0 \\ 0 & 0 & \frac{5 + \sqrt{5}}{2} & 0 \\ 0 & 0 & 0 & \frac{5 + \sqrt{5}}{2}\end{array}\right) = L^TL and \Lambda = \left(\begin{array}{cccc} \frac{3+\sqrt{5}}{2} & 0 & 0 & 0 \\ 0 & \frac{3+\sqrt{5}}{2} & 0 & 0 \\ 0 & 0 & \frac{3-\sqrt{5}}{2} & 0 \\ 0 & 0 & 0 & \frac{3-\sqrt{5}}{2}\end{array}\right). Then the eigendecomposition of M can be given by M = Q \Lambda Q^T, where Q = LD^{-1/2}. In particular, for any integer n \geq 1, M^n = Q\Lambda^n Q^T = (LD^{-1/2})\Lambda^n (LD^{-1/2})^T = L D^{-1} \Lambda^n L^T.
For any integer n \geq 1, D^{-1} \Lambda^n L^T x_0 = \left( \begin{array}{c} \frac{2}{5-\sqrt{5}} \left( \frac{3+\sqrt{5}}{2} \right)^n \\ -\frac{\sqrt{5}}{5} \left( \frac{3+\sqrt{5}}{2} \right)^n \\ \frac{2}{5+\sqrt{5}} \left( \frac{3-\sqrt{5}}{2} \right)^n \\ \frac{\sqrt{5}}{5}\left( \frac{3-\sqrt{5}}{2} \right)^n\end{array} \right). So the recurrence relationship can be written as x_n = M^n x_0 = L D^{-1} \Lambda^n L^T x_0, which is given by \begin{align*}x_n = M^n x_0 &= \left( \begin{array}{cccc} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ -\frac{\sqrt{5}-1}{2} & 0 & \frac{\sqrt{5} + 1}{2} & 0 \\ 0 & -\frac{\sqrt{5}-1}{2} & 0 & \frac{\sqrt{5} + 1}{2}\end{array} \right) \left( \begin{array}{c} \frac{2}{5-\sqrt{5}} \left( \frac{3+\sqrt{5}}{2} \right)^n \\ -\frac{\sqrt{5}}{5} \left( \frac{3+\sqrt{5}}{2} \right)^n \\ \frac{2}{5+\sqrt{5}} \left( \frac{3-\sqrt{5}}{2} \right)^n \\ \frac{\sqrt{5}}{5}\left( \frac{3-\sqrt{5}}{2} \right)^n\end{array} \right)\\ &= \left( \begin{array}{c} \frac{2}{5-\sqrt{5}}\left(\frac{3+\sqrt{5}}{2} \right)^n + \frac{2}{5+\sqrt{5}}\left(\frac{3-\sqrt{5}}{2} \right)^n \\ -\frac{\sqrt{5}}{5} \left(\frac{3+\sqrt{5}}{2} \right)^n + \frac{\sqrt{5}}{5} \left(\frac{3-\sqrt{5}}{2} \right)^n \\ -\frac{\sqrt{5}}{5} \left(\frac{3+\sqrt{5}}{2} \right)^n + \frac{\sqrt{5}}{5} \left(\frac{3-\sqrt{5}}{2} \right)^n \\ \frac{\sqrt{5}(\sqrt{5}-1)}{10} \left(\frac{3 + \sqrt{5}}{2}\right)^n + \frac{\sqrt{5}(\sqrt{5}+1)}{10} \left(\frac{3 - \sqrt{5}}{2}\right)^n \end{array} \right).\end{align*} Therefore, we have -\frac{c_n}{d_n} N = \frac{ \frac{\sqrt{5}}{5} \left(\frac{3+\sqrt{5}}{2} \right)^n - \frac{\sqrt{5}}{5} \left(\frac{3-\sqrt{5}}{2} \right)^n }{ \frac{\sqrt{5}(\sqrt{5} - 1)}{10} \left(\frac{3+\sqrt{5}}{2} \right)^n + \frac{\sqrt{5}(\sqrt{5} + 1)}{10} \left(\frac{3-\sqrt{5}}{2} \right)^n } N, which is a monotonically increasing sequence with \lim_{n\to \infty} -\frac{c_n}{d_n} N = \sup \left\{ -\frac{c_n}{d_n} N : n \in \mathbb{N}\right\} = \frac{\sqrt{5}+1}{2}N. That is, if P \leq \frac{\sqrt{5}+1}{2} N, then A will still win, or more specifically, the function P(N) = \left\lfloor \frac{\sqrt{5}+1}{2} N \right\rfloor gives the maximal value that B can start with but lose to A, who starts with N and goes first.